Question
      
        If $${z_1} \ne  - {z_2}$$  and $$\left| {{z_1} + {z_2}} \right| = \left| {\frac{1}{{{z_1}}} + \frac{1}{{{z_2}}}} \right|$$     then      
       A.
        at least one of $${z_1},{z_2}$$  is unimodular              
       B.
        both $${z_1},{z_2}$$  are unimodular              
       C.
        $${z_1} \cdot {z_2}$$  is unimodular                 
              
       D.
        None of these              
            
                Answer :  
        $${z_1} \cdot {z_2}$$  is unimodular      
             Solution :
        $$\eqalign{
  & \left| {{z_1} + {z_2}} \right| = \left| {\frac{{{z_1} + {z_2}}}{{{z_1}{z_2}}}} \right|  \cr 
  & {\text{or, }}\left| {{z_1} + {z_2}} \right|\left( {1 - \frac{1}{{\left| {{z_1}{z_2}} \right|}}} \right) = 0  \cr 
  & \therefore \,\,\left| {{z_1}{z_2}} \right| = 1. \cr} $$