Question

If $$z = x - i y$$   and $${z^{\frac{1}{3}}} = p + iq,{\text{then }}\frac{{\left( {\frac{x}{p} + \frac{y}{q}} \right)}}{{\left( {{p^2} + {q^2}} \right)}}$$      equal to

A. $$ - 2$$  
B. $$ - 1$$
C. $$2$$
D. $$1$$
Answer :   $$ - 2$$
Solution :
$$\eqalign{ & {z^{\frac{1}{3}}} = p + iq \cr & \Rightarrow \,\,z = {p^3} + {\left( {iq} \right)^3} + 3p\left( {iq} \right)\left( {p + iq} \right) \cr & \Rightarrow \,\,x - iy = {p^3} - 3p{q^2} + i\left( {3{p^2}q - {q^3}} \right) \cr & \therefore \,\,x = {p^3} - 3p{q^2} \cr & \Rightarrow \,\,\frac{x}{p} = {p^2} - 3{q^2} \cr & y = {q^3} - 3{p^2}q \cr & \Rightarrow \,\,\frac{y}{q} = {q^2} - 3{p^2} \cr & \therefore \,\,\frac{x}{p} + \frac{y}{q} = - 2{p^2}\, - \,2{q^2} \cr & \therefore \,\,\frac{{\left( {\frac{x}{p} + \frac{y}{q}} \right)}}{{\left( {{p^2} + {q^2}} \right)}} = - 2 \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section