Question

If $$z \ne 1\,\,{\text{and }}\frac{{{z^2}}}{{z - 1}}$$    is real, then the point represented by the complex number $$z$$ lies:

A. either on the real axis or on a circle passing through the origin.  
B. on a circle with center at the origin
C. either on the real axis or on a circle not passing through the origin.
D. on the imaginary axis.
Answer :   either on the real axis or on a circle passing through the origin.
Solution :
$$\eqalign{ & {\text{Let }}z = x + iy \cr & \therefore \,\,{z^2} = {x^2} - {y^2} + 2ixy \cr & {\text{Now }}\frac{{{z^2}}}{{z - 1}}\,{\text{is real}} \cr & \Rightarrow \,\,{\text{Im}}\left( {\frac{{{z^2}}}{{z - 1}}} \right) = 0 \cr & \Rightarrow \,\,{\text{Im}}\left( {\frac{{{x^2} - {y^2} + 2ixy}}{{\left( {x - 1} \right) + iy}}} \right) = 0 \cr & \Rightarrow \,\,{\text{Im}}\left[ {\left( {{x^2} - {y^2} + 2ixy} \right)\left( {x - 1} \right) - iy} \right] = 0 \cr & \Rightarrow \,\,2xy\left( {x - 1} \right) - y\left( {{x^2} - {y^2}} \right) = 0 \cr & \Rightarrow \,\,y\left( {{x^2} + {y^2} - 2x} \right) = 0 \cr & \Rightarrow \,\,y = 0;\,{x^2} + {y^2} - 2x = 0 \cr} $$
∴ $$z$$ lies either on real axis or on a circle through origin.

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section