Question

If $$\left| {{z^2} - 1} \right| = {\left| z \right|^2} + 1,$$    then $$z$$ lies on

A. an ellipse
B. the imaginary axis  
C. a circle
D. the real axis
Answer :   the imaginary axis
Solution :
$$\eqalign{ & \left| {{z^2} - 1} \right| = {\left| z \right|^2} + 1 \cr & \Rightarrow \,\,{\left| {{z^2} - 1} \right|^2} = {\left( {z\overline z + 1} \right)^2} \cr & \Rightarrow \,\,\left( {{z^2} - 1} \right)\left( {{{\overline z }^2} - 1} \right) = {\left( {z\overline z + 1} \right)^2} \cr & \Rightarrow \,\,{z^2}{\overline z ^2} - {z^2} - {\overline z ^2} + 1 = \,{z^2}{\overline z ^2} + 2z\overline z + 1 \cr & \Rightarrow \,\,{z^2} + 2z\overline z + {\overline z ^2} = 0 \cr & \Rightarrow \,\,{\left( {z + \overline z } \right)^2} = 0 \cr & \Rightarrow \,\,z = - \overline z \cr & \Rightarrow \,\,z\,\,{\text{is purely imaginary}} \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section