Question

If $$\left[ y \right] = $$  the greatest integer less than or equal to $$y$$ then $$\int_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} {\left[ {2\sin \,x} \right]dx} $$    is :

A. $$ - \pi $$
B. 0
C. $$ - \frac{\pi }{2}$$  
D. $$\frac{\pi }{2}$$
Answer :   $$ - \frac{\pi }{2}$$
Solution :
Application of Integration mcq solution image
$$\eqalign{ & I = \int_{\frac{\pi }{2}}^{\frac{{5\pi }}{6}} {\left[ {2\sin \,x} \right]dx} + \int_{\frac{{5\pi }}{6}}^\pi {\left[ {2\sin \,x} \right]dx} + \int_\pi ^{\frac{{7\pi }}{6}} {\left[ {2\sin \,x} \right]dx} + \int_{\frac{{7\pi }}{6}}^{\frac{{3\pi }}{2}} {\left[ {2\sin \,x} \right]dx} \cr & \,\,\,\,\, = \int_{\frac{\pi }{2}}^{\frac{{5\pi }}{6}} {1\,dx} + \int_{\frac{{5\pi }}{6}}^\pi {0\,dx} + \int_\pi ^{\frac{{7\pi }}{6}} { - 1\,dx} + \int_{\frac{{7\pi }}{6}}^{\frac{{3\pi }}{2}} { - 2\,dx} \cr & \,\,\,\,\, = \frac{{5\pi }}{6} - \frac{\pi }{2} - \left( {\frac{{7\pi }}{6} - \pi } \right) - 2\left( {\frac{{3\pi }}{2} - \frac{{7\pi }}{6}} \right) \cr & \,\,\,\,\, = - \frac{\pi }{2} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section