Question
If $$y = f\left( x \right)$$ makes $$+ve$$ intercept of $$2$$ and $$0$$ unit on $$x$$ and $$y$$ axes and encloses an area of $$\frac{3}{4}$$ square unit with the axes then $$\int\limits_0^2 {x\,f'\left( x \right)dx} $$ is :
A.
$$\frac{3}{2}$$
B.
$$1$$
C.
$$\frac{5}{4}$$
D.
$$ - \frac{3}{4}$$
Answer :
$$ - \frac{3}{4}$$
Solution :
We have $$\int\limits_0^2 {f\left( x \right)dx} = \frac{3}{4}\,;$$
$$\eqalign{
& {\text{Now, }}\int\limits_0^2 {x\,f'\left( x \right)dx} \cr
& = x\int\limits_0^2 {f'\left( x \right)dx} - \int\limits_0^2 {f\left( x \right)dx} \cr
& = \left[ {x\,f\left( x \right)} \right]_0^2 - \frac{3}{4} \cr
& = 2f\left( 2 \right) - \frac{3}{4} \cr
& = 0 - \frac{3}{4}\,\,\,\,\,\,\,\left( {\because \,f\left( 2 \right) = 0} \right) \cr
& = - \frac{3}{4} \cr} $$