Question
If $$y = {\cos ^{ - 1}}\left( {\cos \,x} \right)$$ then $$\frac{{dy}}{{dx}}$$ at $$x = \frac{{5\pi }}{4}$$ is equal to :
A.
1
B.
$$-1$$
C.
$$\frac{1}{{\sqrt 2 }}$$
D.
none of these
Answer :
$$-1$$
Solution :
$$y = {\cos ^{ - 1}}\cos \left( {\pi + \overline {x - \pi } } \right) = {\cos ^{ - 1}}\cos \left( {\pi - \overline {x - \pi } } \right).$$ When $$x$$ is around $$\frac{{5\pi }}{4},\,\pi - \overline {x - \pi } $$ is in the second quadrant. So, $$y = \pi - \left( {x - \pi } \right)\,;\,\,\,\,\,\,\therefore \,\,\frac{{dy}}{{dx}} = - 1$$