Question

If $$y = \frac{1}{{1 + {x^{\beta - \alpha }} + {x^{\gamma - \alpha }}}} + \frac{1}{{1 + {x^{\alpha - \beta }} + {x^{\gamma - \beta }}}} + \frac{1}{{1 + {x^{\alpha - \gamma }} + {x^{\beta - \gamma }}}}$$            then $$\frac{{dy}}{{dx}}$$  is equal to :

A. $$0$$  
B. $$1$$
C. $$\left( {\alpha + \beta + \gamma } \right){x^{\alpha + \beta + \gamma - 1}}$$
D. none of these
Answer :   $$0$$
Solution :
$$\eqalign{ & {\text{We have,}} \cr & y = \frac{1}{{1 + \frac{{{x^\beta }}}{{{x^\alpha }}} + \frac{{{x^\gamma }}}{{{x^\alpha }}}}} + \frac{1}{{1 + \frac{{{x^\alpha }}}{{{x^\beta }}} + \frac{{{x^\gamma }}}{{{x^\beta }}}}} + \frac{1}{{1 + \frac{{{x^\alpha }}}{{{x^\gamma }}} + \frac{{{x^\beta }}}{{{x^\gamma }}}}} \cr & = \frac{{{x^\alpha }}}{{{x^\alpha } + {x^\beta } + {x^\gamma }}} + \frac{{{x^\beta }}}{{{x^\alpha } + {x^\beta } + {x^\gamma }}} + \frac{{{x^\gamma }}}{{{x^\alpha } + {x^\beta } + {x^\gamma }}} \cr & = \frac{{{x^\alpha } + {x^\beta } + {x^\gamma }}}{{{x^\alpha } + {x^\beta } + {x^\gamma }}} \cr & = 1 \cr & \therefore \,\frac{{dy}}{{dx}} = 0 \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section