Question

If $$y = {\left( {1 + \frac{1}{x}} \right)^x}$$   then $$\frac{{2\sqrt {{y_2}\left( 2 \right) + \frac{1}{8}} }}{{\left( {\log \frac{3}{2} - \frac{1}{3}} \right)}}$$    is equal to -

A. 3  
B. 4
C. 1
D. 2
Answer :   3
Solution :
Let $$y = {\left( {1 + \frac{1}{x}} \right)^x}$$
Taking logarithm of both sides, we get
$$\eqalign{ & \log \,y = x\left[ {\log \left( {1 + \frac{1}{x}} \right)} \right] \cr & \Rightarrow \frac{1}{y}{y_1}\left( x \right) = \frac{{{x^2}}}{{x + 1}}\left( { - \frac{1}{{{x^2}}}} \right) + \log \left( {1 + \frac{1}{x}} \right) \cr & = - \frac{1}{{x + 1}} + \log \left( {1 + \frac{1}{x}} \right).....(1) \cr & {\text{Since,}}\,y\left( 2 \right) = {\left( {1 + \frac{1}{2}} \right)^2} = \frac{9}{4} \cr & {\text{So, }}{y_1}\left( 2 \right) = \left( {\frac{9}{4}} \right)\left( { - \frac{1}{3} + \log \frac{3}{2}} \right) \cr} $$
Again differentiate equation (1) w.r.t. $$\left( x \right),$$ we get
$$\frac{{y\left( x \right){y_2}\left( x \right) - {{\left[ {{y_1}\left( x \right)} \right]}^2}}}{{{{\left( {y\left( x \right)} \right)}^2}}} = \frac{1}{{{{\left( {1 + x} \right)}^2}}} - \frac{1}{{x\left( {x + 1} \right)}}$$
By putting $$x = 2,$$  we get
$$\frac{{y\left( 2 \right){y_2}\left( 2 \right) - {{\left( {{y_1}\left( 2 \right)} \right)}^2}}}{{{{\left( {y\left( 2 \right)} \right)}^2}}} = \frac{{ - 1}}{{18}}$$
Now, put value of $$y\left( 2 \right)$$  and $${y_1}\left( 2 \right)$$
$$\eqalign{ & \Rightarrow {y_2}\left( 2 \right) = \left( {\frac{9}{4}} \right){\left( { - \frac{1}{3} + \log \frac{3}{2}} \right)^2} - \frac{1}{8} \cr & \Rightarrow {\left( {{y_2}\left( 2 \right) + \frac{1}{8}} \right)^4} = 9{\left( {\log \frac{3}{2} - \frac{1}{3}} \right)^2} \cr & \Rightarrow {\text{ Required expression }} = 3 \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section