Question
      
        If $$y = \left( {1 + \frac{1}{x}} \right)\left( {1 + \frac{2}{x}} \right)\left( {1 + \frac{3}{x}} \right).....\left( {1 + \frac{n}{x}} \right)$$         and $$x \ne 0,$$  then $$\frac{{dy}}{{dx}}$$  when $$x =  - 1$$   is:        
       A.
        $$n!$$              
       B.
        $$\left( {n - 1} \right)!$$              
       C.
        $${\left( { - 1} \right)^n}\left( {n - 1} \right)!$$                 
              
       D.
        $${\left( { - 1} \right)^n}n!$$              
            
                Answer :  
        $${\left( { - 1} \right)^n}\left( {n - 1} \right)!$$      
             Solution :
        $$\eqalign{
  & y = \left( {1 + \frac{1}{x}} \right)\left( {1 + \frac{2}{x}} \right)\left( {1 + \frac{3}{x}} \right).....\left( {1 + \frac{n}{x}} \right)  \cr 
  & \frac{{dy}}{{dx}} = \left( { - \frac{1}{{{x^2}}}} \right)\left( {1 + \frac{2}{x}} \right)\left( {1 + \frac{3}{x}} \right).....\left( {1 + \frac{n}{x}} \right) + \left( {1 + \frac{1}{x}} \right)\left( { - \frac{2}{{{x^2}}}} \right)\left( {1 + \frac{3}{x}} \right).....\left( {1 + \frac{n}{x}} \right) + ... + \left( {1 + \frac{1}{x}} \right)\left( {1 + \frac{2}{x}} \right)\left( {1 + \frac{3}{x}} \right).....\left( { - \frac{n}{{{x^2}}}} \right)  \cr 
  & \because \,\,{\left. {\frac{{dy}}{{dx}}} \right|_{x =  - 1}} = \left( { - 1} \right)\left( { - 1} \right)\left( { - 2} \right)\left( { - 3} \right).....\left( {1 - n} \right)  \cr 
  &  = {\left( { - 1} \right)^n}\left( 1 \right)\left( 2 \right)\left( 3 \right).....\left( {n - 1} \right)  \cr 
  &  = {\left( { - 1} \right)^n}\left( {n - 1} \right)! \cr} $$