Question

If $$\int {\frac{{x{e^x}}}{{\sqrt {1 + {e^x}} }}} dx = f\left( x \right)\sqrt {1 + {e^x}} - 2\,\log \,g\left( x \right) + C,$$          then :

A. $$f\left( x \right) = x - 1$$
B. $$g\left( x \right) = \frac{{\sqrt {1 + {e^x}} - 1}}{{\sqrt {1 + {e^x}} + 1}}$$  
C. $$g\left( x \right) = \frac{{\sqrt {1 + {e^x}} + 1}}{{\sqrt {1 + {e^x}} - 1}}$$
D. $$f\left( x \right) = 2\left( {2 - x} \right)$$
Answer :   $$g\left( x \right) = \frac{{\sqrt {1 + {e^x}} - 1}}{{\sqrt {1 + {e^x}} + 1}}$$
Solution :
$$\eqalign{ & I = \int {\frac{{x{e^x}}}{{\sqrt {1 + {e^x}} }}} dx{\text{ we have}} \cr & \int {\frac{{{e^x}}}{{\sqrt {1 + {e^x}} }}} dx = 2\sqrt {1 + {e^x}} \cr} $$
Integrating $$I$$ by parts with $$x$$ as first function
$$\eqalign{ & I = x.2\sqrt {1 + {e^x}} - \int {2\sqrt {1 + {e^x}} } dx \cr & = 2x\sqrt {1 + {e^x}} - 2\int {t.\frac{{2t\,dt}}{{{t^2} - 1}}\,\,\,\,\,\,} \left( {{\text{Putting }}1 + {e^x} = {t^2}} \right) \cr & = 2x\sqrt {1 + {e^x}} - 4\int {\frac{{{t^2} - 1 + 1}}{{{t^2} - 1}}dt} \cr & = 2x\sqrt {1 + {e^x}} - 4\left[ {t + \frac{1}{2}\log \frac{{t - 1}}{{t + 1}}} \right] + c \cr & = 2\left( {x - 2} \right)\sqrt {1 + {e^x}} - 2\,\log \left( {\frac{{\sqrt {1 + {e^x}} - 1}}{{\sqrt {1 + {e^x}} + 1}}} \right) + c \cr} $$

Releted MCQ Question on
Calculus >> Indefinite Integration

Releted Question 1

The value of the integral $$\int {\frac{{{{\cos }^3}x + {{\cos }^5}x}}{{{{\sin }^2}x + {{\sin }^4}x}}dx} $$    is-

A. $$\sin \,x - 6\,{\tan ^{ - 1}}\left( {\sin \,x} \right) + c$$
B. $$\sin \,x - 2{\left( {\sin \,x} \right)^{ - 1}} + c$$
C. $$\sin \,x - 2{\left( {\sin \,x} \right)^{ - 1}} - 6\,{\tan ^{ - 1}}\left( {\sin \,x} \right) + c$$
D. $$\sin \,x - 2{\left( {\sin \,x} \right)^{ - 1}} + 5\,{\tan ^{ - 1}}\left( {\sin \,x} \right) + c$$
Releted Question 2

If $$\int_{\sin \,x}^1 {{t^2}f\left( t \right)dt = 1 - \sin \,x} ,$$      then $$f\left( {\frac{1}{{\sqrt 3 }}} \right)$$   is-

A. $$\frac{1}{3}$$
B. $${\frac{1}{{\sqrt 3 }}}$$
C. $$3$$
D. $$\sqrt 3 $$
Releted Question 3

Solve this $$\int {\frac{{{x^2} - 1}}{{{x^3}\sqrt {2{x^4} - 2{x^2} + 1} }}dx} = ?$$

A. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{{{x^2}}} + C$$
B. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{{{x^3}}} + C$$
C. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{x} + C$$
D. $$\frac{{\sqrt {2{x^4} - 2{x^2} + 1} }}{{2{x^2}}} + C$$
Releted Question 4

Let $$I = \int {\frac{{{e^x}}}{{{e^{4x}} + {e^{2x}} + 1}}dx,\,J = \int {\frac{{{e^{ - \,x}}}}{{{e^{ - \,4x}} + {e^{ - \,2x}} + 1}}dx.} } $$
Then for an arbitrary constant $$C,$$ the value of $$J-I$$  equals-

A. $$\frac{1}{2}\log \left( {\frac{{{e^{4x}} - {e^{2x}} + 1}}{{{e^{4x}} + {e^{2x}} + 1}}} \right) + C$$
B. $$\frac{1}{2}\log \left( {\frac{{{e^{2x}} + {e^x} + 1}}{{{e^{2x}} - {e^x} + 1}}} \right) + C$$
C. $$\frac{1}{2}\log \left( {\frac{{{e^{2x}} - {e^x} + 1}}{{{e^{2x}} + {e^x} + 1}}} \right) + C$$
D. $$\frac{1}{2}\log \left( {\frac{{{e^{4x}} + {e^{2x}} + 1}}{{{e^{4x}} - {e^{2x}} + 1}}} \right) + C$$

Practice More Releted MCQ Question on
Indefinite Integration


Practice More MCQ Question on Maths Section