Question

If $$xdy = ydx + {y^2}dy,\,y > 0$$      and $$y\left( 1 \right) = 1,$$   then what is $$y\left( { - 3} \right)$$  equal to?

A. $$3$$ only  
B. $$ - 1$$ only
C. Both $$ - 1$$ and $$3$$
D. Neither $$ - 1$$ nor $$3$$
Answer :   $$3$$ only
Solution :
$$\eqalign{ & {\text{Given, }}xdy = ydx + {y^2}dy \cr & \Rightarrow 1 = \frac{4}{x}\frac{{dx}}{{dy}} + \frac{{{y^2}}}{x} \cr & \Rightarrow \frac{{dx}}{{dy}} + y = \frac{x}{y} \cr & \Rightarrow \frac{{dx}}{{dy}} - \frac{x}{y} = - y......\left( 1 \right) \cr & P = - \frac{1}{y},\,Q = - y \cr & {\text{I}}{\text{.F}}{\text{.}} = {e^{\int {Pdy} }} = {e^{\int { - \frac{1}{y}dy} }} = {e^{ - \log \,y}} = \frac{1}{y} \cr & {\text{Multiplying Equation }}\left( 1 \right){\text{ by I}}{\text{.F}}{\text{.}} \cr & \Rightarrow \frac{1}{y}\frac{{dx}}{{dy}} - \frac{x}{{{y^2}}} = - 1\,;\,\frac{x}{y} = \int {\frac{1}{y}\left( { - y} \right)dy + C} \cr & \Rightarrow \frac{x}{y} = \int { - 1\,dy + C} \cr & \Rightarrow \frac{x}{y} = - y + C \cr & \left( {y\left( 1 \right) = 1\, \Rightarrow \frac{1}{1} = - 1 + C\, \Rightarrow C = 2} \right) \cr & \Rightarrow \frac{x}{y} = - y + 2 \cr & \Rightarrow x = - {y^2} + 2y \cr & \Rightarrow y\left( { - 3} \right) \Rightarrow - 3 = - {y^2} + 2y \cr & \Rightarrow {y^2} - 2y - 3 = 0 \cr & \Rightarrow y = \frac{{ + 2 \pm \sqrt {4 + 12} }}{2} \cr & \Rightarrow y = \frac{{2 \pm 4}}{2} \cr & \Rightarrow y = 3,\,\, - 1 \cr & {\text{Since }}y > 0{\text{ so }}y = 3. \cr} $$

Releted MCQ Question on
Calculus >> Differential Equations

Releted Question 1

A solution of the differential equation $${\left( {\frac{{dy}}{{dx}}} \right)^2} - x\frac{{dy}}{{dx}} + y = 0$$     is-

A. $$y=2$$
B. $$y=2x$$
C. $$y=2x-4$$
D. $$y = 2{x^2} - 4$$
Releted Question 2

If $${x^2} + {y^2} = 1,$$   then

A. $$yy'' - 2{\left( {y'} \right)^2} + 1 = 0$$
B. $$yy'' + {\left( {y'} \right)^2} + 1 = 0$$
C. $$yy'' + {\left( {y'} \right)^2} - 1 = 0$$
D. $$yy'' + 2{\left( {y'} \right)^2} + 1 = 0$$
Releted Question 3

If $$y\left( t \right)$$ is a solution $$\left( {1 + t} \right)\frac{{dy}}{{dt}} - ty = 1$$    and $$y\left( 0 \right) = - 1,$$   then $$y\left( 1 \right)$$ is equal to-

A. $$ - \frac{1}{2}$$
B. $$e + \frac{1}{2}$$
C. $$e - \frac{1}{2}$$
D. $$\frac{1}{2}$$
Releted Question 4

If $$y = y\left( x \right)$$   and $$\frac{{2 + \sin \,x}}{{y + 1}}\left( {\frac{{dy}}{{dx}}} \right) = - \cos \,x,\,y\left( 0 \right) = 1,$$
then $$y\left( {\frac{\pi }{2}} \right)$$   equals-

A. $$\frac{1}{3}$$
B. $$\frac{2}{3}$$
C. $$ - \frac{1}{3}$$
D. $$1$$

Practice More Releted MCQ Question on
Differential Equations


Practice More MCQ Question on Maths Section