Question

If $$x\cos \theta + y\sin \theta = z,$$     then what is the value of $${\left( {x\sin \theta - y\cos \theta } \right)^2}?$$

A. $${x^2} + {y^2} - {z^2}$$  
B. $${x^2} - {y^2} - {z^2}$$
C. $${x^2} - {y^2} + {z^2}$$
D. $${x^2} + {y^2} + {z^2}$$
Answer :   $${x^2} + {y^2} - {z^2}$$
Solution :
$$\eqalign{ & {\text{Here, }}z = x\cos \theta + y\sin \theta \cr & {z^2} = {x^2}{\cos ^2}\theta + {y^2}{\sin ^2}\theta + 2\,xy\sin \theta \cos \theta \cr & \Rightarrow 2\,xy\sin \theta \cos \theta = {z^2} - {x^2}{\cos ^2}\theta - {y^2}{\sin ^2}\theta \cr & {\text{Let, }}L = {\left( {x\sin \theta - y\cos \theta } \right)^2} \cr & \Rightarrow L = {x^2}{\sin ^2}\theta + {y^2}{\cos ^2}\theta - 2\,xy\sin \theta \cos \theta \cr & \Rightarrow L = {x^2}{\sin ^2}\theta + {y^2}{\cos ^2}\theta - \left[ {{z^2} - {x^2}{{\cos }^2}\theta - {y^2}{{\sin }^2}\theta } \right] \cr & \Rightarrow L = {x^2}\left[ {{{\sin }^2}\theta + {{\cos }^2}\theta } \right] + {y^2}\left[ {{{\sin }^2}\theta + {{\cos }^2}\theta } \right] - {z^2} \cr & \Rightarrow L = {x^2} + {y^2} - {z^2} \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section