Question

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1  
D. None of these
Answer :   1
Solution :
$$\eqalign{ & \because \,\,x,y,z{\text{ are the }}{p^{{\text{th}}}},{q^{{\text{th}}}}{\text{ and }}{r^{{\text{th}}}}\,{\text{terms of an A}}{\text{.P}}{\text{.}} \cr & \therefore \,\,\,x = A + \left( {p - 1} \right)D;y = A + \left( {q - 1} \right)D;z = A + \left( {r - 1} \right)D \cr & \Rightarrow \,\,x - y = \left( {p - q} \right)D;y - z = \left( {q - r} \right)D;z - x = \left( {r - p} \right)D\,\,\,\,\,\,\,.....\left( 1 \right) \cr & {\text{where }}A{\text{ is the first term and }}D{\text{ is the common difference}}{\text{.}} \cr & {\text{Also }}x,y,z{\text{ are the }}{p^{{\text{th}}}},{q^{{\text{th}}}}{\text{ and }}{r^{{\text{th}}}}\,{\text{terms of a G}}{\text{.P}}{\text{.}} \cr & \therefore \,\,x = A{R^{p - 1}},y = A{R^{q - 1}},z = A{R^{r - 1}} \cr & \therefore \,\,{x^{y - z}}{y^{z - x}}{z^{x - y}} = {\left( {A{R^{p - 1}}} \right)^{y - z}}{\left( {A{R^{q - 1}}} \right)^{z - x}}{\left( {A{R^{r - 1}}} \right)^{x - y}} \cr & = {A^{y - z + z - x + x - y}}{R^{\left( {p - 1} \right)\left( {y - z} \right) + \left( {q - 1} \right)\left( {z - x} \right) + \left( {r - 1} \right)\left( {x - y} \right)}} \cr & = {A^0}{R^{\left( {p - 1} \right)\left( {q - r} \right)D + \left( {q - 1} \right)\left( {r - p} \right)D + \left( {r - 1} \right)\left( {p - q} \right)D}} \cr & = {A^0}{R^0} = 1 \cr} $$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section