Question

If $$\left[ x \right]$$ = the greatest integer less than or equal to $$x,$$ and $$(x)$$ = the least integer greater than or equal to $$x,$$ and $${\left[ x \right]^2} + {\left( x \right)^2} > 25$$    then $$x$$ belongs to

A. $$\left[ {3,4} \right]$$
B. $$\left( { - \infty , - 4} \right]$$
C. $$\left[ {4, + \infty } \right)$$
D. $$\left( { - \infty , - 4} \right] \cup \left[ {4, + \infty } \right)$$  
Answer :   $$\left( { - \infty , - 4} \right] \cup \left[ {4, + \infty } \right)$$
Solution :
$$\eqalign{ & {\text{If }}x = n \in Z,{n^2} + {n^2} > 25.\,{\text{So, }}{n^2} > \frac{{25}}{2} \cr & \therefore \,\,x = n = 4,5,6,.....\,\,{\text{or, }} - 4, - 5, - 6,..... \cr & {\text{If }}x = n + k,n \in Z,0 < k < 1\,\,{\text{then }}{n^2} + {\left( {n + 1} \right)^2} > 25 \cr & {\text{or, }}{n^2} + n - 12 > 0 \cr & \therefore \,\,n < - 4\,\,{\text{or, }}n > 3 \cr & \therefore \,\,x < - 4 + k\,\,{\text{or, }}x > 3 + k,\,{\text{where }}0 < k < 1 \cr & \therefore \,\,x \leqslant - 4\,\,{\text{or, }}x \geqslant 4. \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section