Question

If $$x \ne 0,$$  then the sum of the series $$1 + \frac{x}{{2!}} + \frac{{2{x^2}}}{{3!}} + \frac{{3{x^3}}}{{4!}} + .....\,\infty $$       is

A. $$\frac{{{e^x} + 1}}{x}$$
B. $$\frac{{{e^x}\left( {x - 1} \right)}}{x}$$
C. $$\frac{{{e^x}\left( {x - 1} \right) + 1}}{x}$$
D. $$\frac{{{e^x}\left( {x - 1} \right) + 1 + x}}{x}$$  
Answer :   $$\frac{{{e^x}\left( {x - 1} \right) + 1 + x}}{x}$$
Solution :
The general term of the series
$$\eqalign{ & \frac{x}{{2!}} + \frac{{2{x^2}}}{{3!}} + \frac{{3{x^3}}}{{4!}} + .....\,\infty {\text{ is}} \cr & {T_n} = \frac{{n{x^n}}}{{\left( {n + 1} \right)!}},n = 1,2,.....,\infty \cr & = \frac{{n + 1 - 1}}{{\left( {n + 1} \right)!}}{x^n} = \frac{{{x^n}}}{{n!}} - \frac{1}{x}\frac{{{x^{n + 1}}}}{{\left( {n + 1} \right)!}} \cr & \therefore 1 + \frac{x}{{2!}} + \frac{{2{x^2}}}{{3!}} + \frac{{3{x^3}}}{{4!}} + .....\,\infty \cr & = 1 + \sum\limits_{n = 1}^\infty {\frac{{{x^n}}}{{n!}} - \frac{1}{x}\sum\limits_{n = 1}^\infty {\frac{{{x^{n + 1}}}}{{\left( {n + 1} \right)!}}} } \cr & = 1 + \left( {{e^x} - 1} \right) - \frac{1}{x}\left( {{e^x} - 1 - x} \right) \cr & = \frac{{x{e^x} - {e^x} + 1 + x}}{x} = \frac{{\left( {x - 1} \right){e^x} + \left( {1 + x} \right)}}{x} \cr} $$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section