Question

If $$x = {\log_5}3 + {\log _7}5 + {\log _9}7$$      then

A. $$x \geqslant \frac{3}{2}$$
B. $$x \geqslant \frac{1}{{\root 3 \of 2 }}$$
C. $$x \geqslant \frac{3}{{\root 3 \of 2 }}$$  
D. none of these
Answer :   $$x \geqslant \frac{3}{{\root 3 \of 2 }}$$
Solution :
$${\text{AM}} \geqslant {\text{GM}}$$   for positive numbers. So, $$\frac{x}{3} \geqslant \sqrt {{\log_5}3 \cdot {{\log }_7}5 \cdot {{\log }_9}7} = \,\root 3 \of {{{\log }_9}3} $$
$$\therefore \,\,\frac{x}{3} \geqslant \root 3 \of {\frac{1}{{{{\log }_3}9}}} = \root 3 \of {\frac{1}{2}} .$$

Releted MCQ Question on
Algebra >> Sequences and Series

Releted Question 1

If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$   terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$   is equal to:

A. $$xyz$$
B. 0
C. 1
D. None of these
Releted Question 2

The third term of a geometric progression is 4. The product of the first five terms is

A. $${4^3}$$
B. $${4^5}$$
C. $${4^4}$$
D. none of these
Releted Question 3

The rational number, which equals the number $$2.\overline {357} $$   with recurring decimal is

A. $$\frac{{2355}}{{1001}}$$
B. $$\frac{{2379}}{{997}}$$
C. $$\frac{{2355}}{{999}}$$
D. none of these
Releted Question 4

If $$a, b, c$$  are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$     and $$d{x^2} + 2ex + f = 0$$     have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$   are in-

A. A.P.
B. G.P.
C. H.P.
D. none of these

Practice More Releted MCQ Question on
Sequences and Series


Practice More MCQ Question on Maths Section