Question

If $$x$$ is so small that $${x^3}$$ and higher powers of $$x$$ may be neglected, then $$\frac{{{{\left( {1 + x} \right)}^{\frac{3}{2}}} - {{\left( {1 + \frac{1}{2}x} \right)}^3}}}{{{{\left( {1 - x} \right)}^{\frac{1}{2}}}}}$$     may be approximated as

A. $$1 - \frac{3}{8}{x^2}$$
B. $$3x + \frac{3}{8}{x^2}$$
C. $$ - \frac{3}{8}{x^2}$$  
D. $$\frac{x}{2} - \frac{3}{8}{x^2}$$
Answer :   $$ - \frac{3}{8}{x^2}$$
Solution :
$$\because \,\,{x^3}$$ and higher powers of $$x$$ may be neglected
$$\eqalign{ & \therefore \,\,\frac{{{{\left( {1 + x} \right)}^{\frac{3}{2}}} - {{\left( {1 + \frac{x}{2}} \right)}^3}}}{{{{\left( {1 - x} \right)}^{\frac{1}{2}}}}} \cr & = {\left( {1 - x} \right)^{\frac{{ - 1}}{2}}}\left[ {\left( {1 + \frac{3}{2}x + \frac{{\frac{3}{2}.\frac{1}{2}}}{{2!}}{x^2}} \right) - \left( {1 + \frac{{3x}}{2} + \frac{{3.2}}{{2!}}\frac{{{x^2}}}{4}} \right)} \right] \cr & = \left[ {1 + \frac{x}{2} + \frac{{\frac{1}{2}.\frac{3}{2}}}{{2!}}{x^2}} \right]\left[ {\frac{{ - 3}}{8}{x^2}} \right] = \frac{{ - 3}}{8}{x^2} \cr} $$
(as $${x^3}$$ and higher powers of $$x$$ can be neglected)

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section