Question

If $$\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{x^2} + x + 1}}{{x + 1}} - ax - b} \right) = 4,$$       then-

A. $$a=1,\,\,b=4$$
B. $$a=1,\,\,b=-4$$  
C. $$a=2,\,\,b=-3$$
D. $$a=2,\,\,b=3$$
Answer :   $$a=1,\,\,b=-4$$
Solution :
Given:
$$\eqalign{ & \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{x^2} + x + 1}}{{x + 1}} - ax - b} \right) = 4 \cr & \Rightarrow \mathop {\lim }\limits_{x \to \infty } \frac{{{x^2} + x + 1 - a{x^2} - ax - bx - b}}{{x + 1}} = 4 \cr & \Rightarrow \mathop {\lim }\limits_{x \to \infty } \frac{{\left( {1 - a} \right){x^2} + \left( {1 - a - b} \right)x + \left( {1 - b} \right)}}{{x + 1}} = 4 \cr} $$
For this limit to be finite $$1 - a = 0\,\,\,\, \Rightarrow a = 1$$
Then given limit reduces to
$$\eqalign{ & \mathop {\lim }\limits_{x \to \infty } \frac{{ - bx + \left( {1 - b} \right)}}{{x + 1}} = 4 \cr & \Rightarrow \mathop {\lim }\limits_{x \to \infty } \frac{{ - b + \frac{{\left( {1 - b} \right)}}{x}}}{{1 + \frac{1}{x}}} = 4 \cr & \Rightarrow - b = 4\,\,\,\,{\text{or}}\,\,\,b = - 4 \cr & {\text{Hence}}\,\,\,a = 1,\,\,\,b = - 4 \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section