Question

If $$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{a}{x} + \frac{b}{{{x^2}}}} \right)^{2x}} = {e^2},$$       then the value of $$a$$ and $$b,$$ are-

A. $$a=1$$   and $$b=2$$
B. $$a = 1,\,\,b \in {\bf{R}}$$  
C. $$a \in {\bf{R}},\,\,b = 2$$
D. $$a \in {\bf{R}},\,\,b \in {\bf{R}}$$
Answer :   $$a = 1,\,\,b \in {\bf{R}}$$
Solution :
We know that
$$\eqalign{ & \mathop {\lim }\limits_{x \to \infty } {\left( {1 + x} \right)^{\frac{1}{x}}} = e \cr & \therefore \,\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \frac{a}{x} + \frac{b}{{{x^2}}}} \right)^{2x}} = {e^2} \cr & = \mathop {\lim }\limits_{x \to \infty } {\left[ {\left( {1 + \frac{a}{x} + \frac{b}{{{x^2}}}} \right)\left( {\frac{1}{{\frac{a}{x} + \frac{b}{{{x^2}}}}}} \right)} \right]^{2x\left( {\frac{a}{x} + \frac{b}{{{x^2}}}} \right)}} = {e^2} \cr & = {e^{\mathop {\lim }\limits_{x \to \infty } 2\left[ {a + \frac{b}{x}} \right]}} \cr & = {e^2} \cr & \Rightarrow {e^{2a}} = {e^2} \cr & \Rightarrow a = 1{\text{ and }}b \in {\bf{R}} \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section