Question

If $$\left[ x \right]$$ denotes the greatest integer less than or equal to $$x$$ then $$\int_0^\infty {\left[ {\frac{2}{{{e^x}}}} \right]dx} $$    is equal to :

A. $${\log _e}2$$  
B. $${e^2}$$
C. 0
D. $$\frac{2}{e}$$
Answer :   $${\log _e}2$$
Solution :
$$\eqalign{ & I = \int_0^\infty {\left[ {\frac{2}{{{e^x}}}} \right]dx} \cr & {\text{Substitute }}{e^x} = t \Rightarrow x = \log \,t \cr & dx = \frac{1}{t}dt \cr & {\text{Then}} \cr & I = \int_1^\infty {\left[ {\frac{2}{t}} \right]\frac{{dt}}{t}} \cr & = \int_1^2 {\left[ { - \frac{2}{t}} \right]\frac{{dt}}{t}} + \int_2^\infty {\left[ {\frac{2}{t}} \right]\frac{{dt}}{t}} \cr & = \int_1^2 {\frac{{dt}}{t}} + \int_2^\infty {0.} \frac{{dt}}{t} \cr & = \left[ {\log \,t} \right]_1^2 \cr & = \log \,2 - \log \,1 \cr & = \log \,2 - 0 \cr & = \log \,2 \cr & = {\log _e}2 \cr & \therefore \,I = {\log _e}2 \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section