Question

If $$x$$ be real and $$b < c,$$  then $$\frac{{{x^2} - bc}}{{2x - b - c}}$$   lies in

A. $$\left( {b,c} \right)$$
B. $$\left[ {b,c} \right]$$
C. $$\left( { - \infty ,b} \right] \cup \left[ {c,\infty } \right)$$  
D. $$\left( { - \infty ,b} \right) \cup \left( {c,\infty } \right)$$
Answer :   $$\left( { - \infty ,b} \right] \cup \left[ {c,\infty } \right)$$
Solution :
Let, $$y = \frac{{{x^2} - bc}}{{2x - b - c}}$$
$$\eqalign{ & \Rightarrow {x^2} - 2yx + \left( {b + c} \right)y - bc = 0 \cr & \because x \in R,\,\,{\text{so }}4{y^2} - 4\left( {b + c} \right)y + 4bc \geqslant 0 \cr & \Rightarrow x \leqslant b{\text{ or }}x \geqslant c\,\,\,\,\,\left( {\because b < c} \right) \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section