Question

If $${x^a}{y^b} = {\left( {x - y} \right)^{a + b}},$$     then the value of $$\frac{{dy}}{{dx}} - \frac{y}{x}$$   is equal to :

A. $$\frac{a}{b}$$
B. $$\frac{b}{a}$$
C. $$1$$
D. $$0$$  
Answer :   $$0$$
Solution :
$$\eqalign{ & {x^a}{y^b} = {\left( {x - y} \right)^{a + b}}{\text{ taking }}\log {\text{ both sides}}{\text{.}} \cr & \log \left( {{x^a}{y^b}} \right) = \log {\left( {x - y} \right)^{\left( {a + b} \right)}} \cr & a\log \,x + b\,\log \,y = \left( {a + b} \right)\log \left( {x - y} \right) \cr & {\text{differentiating both sides w}}{\text{.r}}{\text{.t}}{\text{. }}'x' \cr & \frac{a}{x} + \frac{b}{y}\frac{{dy}}{{dx}} = \frac{{\left( {a + b} \right)}}{{\left( {x - y} \right)}}\left[ {1 - \frac{{dy}}{{dx}}} \right] \cr & \frac{{dy}}{{dx}}\left[ {\frac{b}{y} + \frac{{a + b}}{{x - y}}} \right] = \frac{{a + b}}{{x - y}} - \frac{a}{x} \cr & \frac{{dy}}{{dx}}\left[ {\frac{{bx - by + ay + by}}{{y\left( {x - y} \right)}}} \right] = \frac{{ax + bx - ax + ay}}{{x\left( {x - y} \right)}} \cr & \frac{{dy}}{{dx}}\left[ {\frac{{bx + ay}}{y}} \right] = \frac{{bx + ay}}{x} \cr & \frac{{dy}}{{dx}} = \frac{y}{x}\,;\,\,\frac{{dy}}{{dx}} - \frac{y}{x} = 0 \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section