Question

If $$X = \left\{ {{4^n} - 3n - 1:n \in N} \right\}$$      and $$Y = \left\{ {9\left( {n - 1} \right):n \in N} \right\},$$     where $$N$$ is the set of natural numbers, then $$X \cup Y$$  is equal to:

A. $$X$$
B. $$Y$$  
C. $$N$$
D. $$Y - X$$
Answer :   $$Y$$
Solution :
$$\eqalign{ & {4^n} - 3n - 1 \cr & = {\left( {1 + 3} \right)^n} - 3n - 1 \cr & = \left[ {^n{C_0} + {\,^n}{C_1}.3 + {\,^n}{C_2}{{.3}^2} + ..... + {\,^n}{C_n}{{.3}^n}} \right] - 3n - 1 \cr & = 9\left[ {^n{C_2} + {\,^n}{C_3}.3 + ..... + {\,^n}{C_n}{{.3}^{n - 2}}} \right] \cr} $$
$$\therefore \,\,{4^n} - 3n - 1$$    is a multiple of 9 for all $$n.$$
∴ $$X$$ = {$$x : x$$  is a multiple of 9 }
Also, $$Y = \left\{ {9\left( {n - 1} \right):n \in N} \right\} = $$      {All multiples of 9}
Clearly $$X \subset Y.$$
$$\therefore X \cup Y = Y.$$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section