Question

If $${x^2} - x + 1 = 0$$    then the value of $${\sum\limits_{n = 1}^5 {\left( {{x^n} + \frac{1}{{{x^n}}}} \right)} ^2}$$   is

A. 8  
B. 10
C. 12
D. None of these
Answer :   8
Solution :
$$\eqalign{ & x = \frac{{1 \pm \sqrt {3i} }}{2} = \cos \frac{\pi }{3} \pm i\sin \frac{\pi }{3} \cr & \therefore \,\,{x^{2n}} = \cos \frac{{2n\pi }}{3} \pm i\sin \frac{{2n\pi }}{3} \cr & {\text{or,}}\,\,{\left( {{x^n} + \frac{1}{{{x^n}}}} \right)^2} = {x^{2n}} + {x^{ - 2n}} + 2 \cr & {\text{or,}}\,\,{\left( {{x^n} + \frac{1}{{{x^n}}}} \right)^2} = \cos \frac{{2n\pi }}{3} \pm i\sin \frac{{2n\pi }}{3} + \cos \frac{{2n\pi }}{3} \mp i\sin \frac{{2n\pi }}{3} + 2 \cr & {\text{or,}}\,\,{\left( {{x^n} + \frac{1}{{{x^n}}}} \right)^2} = 2 + 2\cos \frac{{2n\pi }}{3}. \cr} $$
∴ the value $$ = 10 + 2\left\{ {\cos \frac{{2\pi }}{3} + \cos \frac{{4\pi }}{3} + \cos \frac{{6\pi }}{3} + \cos \frac{{8\pi }}{3} + \cos \frac{{10\pi }}{3}} \right\}.$$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section