Question

If $$\vec u,\,\vec v$$  and $${\vec w}$$ are three non-coplanar vectors, then $$\left( {\vec u + \vec v - \vec w} \right).\left( {\vec u - \vec v} \right) \times \left( {\vec v - \vec w} \right)$$       equals :

A. $$3\vec u.\vec v \times \vec w$$
B. $$0$$
C. $$\vec u.\vec v \times \vec w$$  
D. $$\vec u.\vec w \times \vec v$$
Answer :   $$\vec u.\vec v \times \vec w$$
Solution :
$$\eqalign{ & \left( {\vec u + \vec v - \vec w} \right).\left( {\vec u \times \vec v - \vec u \times \vec w - \vec v \times \vec v + \vec v \times \vec w} \right) \cr & = \left( {\vec u + \vec v - \vec w} \right).\left( {\vec u \times \vec v - \vec u \times \vec w + \vec v \times \vec w} \right) \cr & = \vec u.\left( {\vec u \times \vec v} \right) - \vec u.\left( {\vec u \times \vec w} \right) + \vec u.\left( {\vec v \times \vec w} \right) + \vec v.\left( {\vec u \times \vec v} \right) - \vec v.\left( {\vec u \times \vec w} \right) + \vec v.\left( {\vec v \times \vec w} \right) - \vec w.\left( {\vec u \times \vec v} \right) + \vec w.\left( {\vec u \times \vec w} \right) - \vec w.\left( {\vec u \times \vec w} \right) \cr & = \vec u.\left( {\vec v \times \vec w} \right) - \vec v.\left( {\vec u \times \vec w} \right) - \vec w.\left( {\vec u \times \vec v} \right) \cr & = \left[ {\vec u\,\vec v\,\vec w} \right] + \left[ {\vec v\,\vec w\,\vec u} \right] - \left[ {\vec w\,\vec u\,\vec v} \right] \cr & = \vec u.\left( {\vec v \times \vec w} \right) \cr} $$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section