Question

If two of the three feet of normals drawn from a point to the parabola $${y^2} = 4x$$  be $$\left( {1,\,2} \right)$$  and $$\left( {1,\, - 2} \right)$$  then the third foot is :

A. $$\left( {2,\,2\sqrt 2 } \right)$$
B. $$\left( {2,\, - 2\sqrt 2 } \right)$$
C. $$\left( {0,\,0} \right)$$  
D. none of these
Answer :   $$\left( {0,\,0} \right)$$
Solution :
The sum of the ordinates of the feet $$ = {y_1} + {y_2} + {y_3} = 0$$
$$\eqalign{ & \therefore \,2 + \left( { - 2} \right) + {y_3} = 0 \cr & \therefore \,{y_3} = 0 \cr} $$

Releted MCQ Question on
Geometry >> Parabola

Releted Question 1

Consider a circle with its centre lying on the focus of the parabola $${y^2} = 2px$$   such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is-

A. $$\left( {\frac{p}{2},\,p} \right){\text{ or }}\left( {\frac{p}{2},\, - p} \right)$$
B. $$\left( {\frac{p}{2},\, - \frac{p}{2}} \right)$$
C. $$\left( { - \frac{p}{2},\,p} \right)$$
D. $$\left( { - \frac{p}{2},\, - \frac{p}{2}} \right)$$
Releted Question 2

The curve described parametrically by $$x = {t^2} + t + 1,\,\,y = {t^2} - t + 1$$      represents-

A. a pair of straight lines
B. an ellipse
C. a parabola
D. a hyperbola
Releted Question 3

If $$x+y=k$$   is normal to $${y^2} = 12x,$$   then $$k$$ is-

A. $$3$$
B. $$9$$
C. $$ - 9$$
D. $$ - 3$$
Releted Question 4

If the line $$x-1=0$$   is the directrix of the parabola $${y^2} - kx + 8 = 0,$$    then one of the values of $$k$$ is-

A. $$\frac{1}{8}$$
B. $$8$$
C. $$4$$
D. $$\frac{1}{4}$$

Practice More Releted MCQ Question on
Parabola


Practice More MCQ Question on Maths Section