If $$t_n$$ denotes the $$n^{th}$$ term of a G.P. whose common ratio is $$r,$$ then the progression whose $$n^{th}$$ term is $$\frac{1}{{t_n^2 + t_{n + 1}^2}}{\text{is}}$$
A.
A.P.
B.
G.P.
C.
H.P.
D.
None of these
Answer :
G.P.
Solution :
If $$a$$ be the first term of G.P. then given
$$\eqalign{
& {x_n} = \frac{1}{{t_n^2 + t_{n + 1}^2}} = \frac{1}{{{a^2}{r^{2\left( {n - 1} \right)}} + {a^2}{r^{2n}}}} \cr
& = \frac{1}{{{a^2}{r^{2n}}}} \cdot \frac{1}{{{r^{ - 2}} + 1}} = \frac{1}{{{a^2}{r^{2n}}}} \cdot \frac{{{r^2}}}{{1 + {r^2}}} \cr
& \therefore {x_{n - 1}} = \frac{1}{{{a^2}{r^{2n - 2}}}} \cdot \frac{{{r^2}}}{{1 + {r^2}}} \cr
& \therefore \frac{{{x_n}}}{{{x_{n - 1}}}} = \frac{1}{{{r^2}}} = {\text{constant}} \cr
& \therefore {\text{The sequence}}\left\langle {{x_n}} \right\rangle {\text{is a G}}{\text{.P}}{\text{.}} \cr} $$
Releted MCQ Question on Algebra >> Sequences and Series
Releted Question 1
If $$x, y$$ and $$z$$ are $${p^{{\text{th}}}},{q^{{\text{th}}}}\,{\text{and }}{r^{{\text{th}}}}$$ terms respectively of an A.P. and also of a G.P., then $${x^{y - z}}{y^{z - x}}{z^{x - y}}$$ is equal to:
If $$a, b, c$$ are in G.P., then the equations $$a{x^2} + 2bx + c = 0$$ and $$d{x^2} + 2ex + f = 0$$ have a common root if $$\frac{d}{a},\frac{e}{b},\frac{f}{c}$$ are in-