Question

If $$\theta $$ is a positive acute angle then :

A. $$\tan \,\theta < \theta < \sin \,\theta $$
B. $$\theta < \sin \,\theta < \tan \,\theta $$
C. $$\sin \,\theta < \tan \,\theta < \theta $$
D. none of these  
Answer :   none of these
Solution :
$$\eqalign{ & {\text{Let }}f\left( \theta \right) = \tan \,\theta - \theta \cr & {\text{Then }}f'\left( \theta \right) = {\sec ^2}\theta - 1 = {\tan ^2}\theta > 0 \cr} $$
$$\therefore \,f\left( \theta \right)$$   is increasing. Therefore, $$f\left( \theta \right) > f\left( 0 \right)\,\,\,\,\, \Rightarrow \tan \,\theta - \theta > 0$$
Let $$\phi \left( \theta \right) = \theta - \sin \,\theta $$
Then $$\phi '\left( \theta \right) = 1 - \cos \,\theta = 2{\sin ^2}\frac{\theta }{2} > 0$$
$$\therefore \,\phi \left( \theta \right)$$   is increasing. Therefore, $$\phi \left( \theta \right) > \phi \left( 0 \right)\,\, \Rightarrow \sin \,\theta - \,\theta > 0$$

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section