Question
If the vectors $$\vec c,\,\vec a = x\hat i + y\hat j + z\hat k$$ and $$\hat b = \hat j$$ are such that $$\vec a,\,\vec c$$ and $${\vec b}$$ form aright handed system then $${\vec c}$$ is :
A.
$$z\hat i - x\hat k$$
B.
$${\vec 0}$$
C.
$$y\hat j$$
D.
$$ - z\hat i + x\hat k$$
Answer :
$$z\hat i - x\hat k$$
Solution :
Since $$\vec a,\,\vec c,\,\vec b$$ form a right handed system,
\[\therefore \,\,\,\vec c = \,\vec b \times \vec a = \left| \begin{array}{l}
\hat i\,\,\,\,\,\hat j\,\,\,\,\,\hat k\\
0\,\,\,\,\,1\,\,\,\,\,0\\
x\,\,\,\,\,y\,\,\,\,z
\end{array} \right| = z\hat i - x\hat k\]