Question

If the third term in the expansion of $${\left[ {x + {x^{{{\log }_{10}}x}}} \right]^5}$$   is $$10^6,\,$$ then $$x$$ may be

A. $$1$$
B. $$\sqrt {10} $$
C. $$10$$  
D. $${10^{ - \frac{2}{5}}}$$
Answer :   $$10$$
Solution :
Put $${\log _{10}}x = y,$$   the given expression becomes $${\left( {x + {x^y}} \right)^5}.$$
$$\eqalign{ & {T_3} = {\,^5}{C_2} \cdot {x^3}{\left( {{x^y}} \right)^2} = 10{x^{3 + 2y}} = {10^6}\left( {{\text{given}}} \right) \cr & \Rightarrow \left( {3 + 2y} \right){\log _{10}}x = 5{\log _{10}}10 = 5 \cr & \Rightarrow \left( {3 + 2y} \right)y = 5 \cr & \Rightarrow y = 1, - \frac{5}{2} \cr & \Rightarrow {\log _{10}}x = 1{\text{ or }}{\log _{10}}x = - \frac{5}{2} \cr & \therefore x = 10{\text{ or }}x = {\left( {10} \right)^{ - \frac{5}{2}}} \cr} $$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section