Question

If the straight lines $$\frac{{x - 1}}{k} = \frac{{y - 2}}{2} = \frac{{z - 3}}{3}$$     and $$\frac{{x - 2}}{3} = \frac{{y - 3}}{k} = \frac{{z - 1}}{2}$$     intersect at a point, then the integer $$k$$ is equal to :

A. $$-5$$  
B. 5
C. 2
D. $$-2$$
Answer :   $$-5$$
Solution :
The two lines intersect if shortest distance between them is zero i.e.
$$\frac{{\left( {{{\vec a}_2} - {{\vec a}_1}} \right).{{\vec b}_1} \times {{\vec b}_2}}}{{\left| {{{\vec b}_1} \times {{\vec b}_2}} \right|}} = 0\,\,\,\,\,\, \Rightarrow \left( {{{\vec a}_2} - {{\vec a}_1}} \right).{{\vec b}_1} \times {{\vec b}_2} = 0$$
Where,
$$\eqalign{ & {{\vec a}_1} = \hat i + 2\hat j + 3\hat k,\,\,\,\,{{\vec b}_1} = k\hat i + 2\hat j + 3\hat k \cr & {{\vec a}_2} = 2\hat i + 3\hat j + \hat k,\,\,\,\,{{\vec b}_2} = 3\hat i + k\hat j + 2\hat k \cr} $$
\[ \Rightarrow \left| \begin{array}{l} 1\,\,\,\,\,1\,\,\,\, - 2\\ k\,\,\,\,\,2\,\,\,\,\,\,\,\,\,3\\ 3\,\,\,\,\,k\,\,\,\,\,\,\,\,\,2 \end{array} \right| = 0\]
$$\eqalign{ & \Rightarrow 1\left( {4 - 3k} \right) - 1\left( {2k - 9} \right) - 2\left( {{k^2} - 6} \right) = 0 \cr & \Rightarrow - 2{k^2} - 5k + 25 = 0 \cr & \Rightarrow k = - 5{\text{ or }}\frac{5}{2} \cr} $$
$$\because \,\,k$$  is an integer, therefore $$k=-5$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section