Question

If the solutions for $$\theta $$ from the equation $${\sin ^2}\theta - 2\sin \theta + \lambda = 0$$     lie in \[\begin{array}{*{20}{c}} \cup \\ {n \in {\Bbb Z}} \end{array}\left( {2n\pi - \frac{\pi }{6},\overline {2n + 1} \,\pi + \frac{\pi }{6}} \right)\]       then the set of possible values of $$\lambda $$ is

A. $$\left( { - \frac{5}{4},1} \right]$$  
B. $$\left( { - \infty ,1} \right]$$
C. $$\left( { - \frac{5}{4}, + \infty } \right]$$
D. $$\left\{ 1 \right\}$$
Answer :   $$\left( { - \frac{5}{4},1} \right]$$
Solution :
$$\sin \theta = \frac{{2 \pm \sqrt {4 - 4\lambda } }}{2} = 1 \pm \sqrt {1 - \lambda } .$$       For real values, $$1 - \lambda \geqslant 0,\,\,{\text{i}}{\text{.e}}{\text{., }}\lambda \leqslant 1.$$
As $$ - 1 \leqslant \sin\theta \leqslant 1,\sin\theta = 1 - \sqrt {1 - \lambda } .$$
From the question, $$\sin\theta > - \frac{1}{2}.\,{\text{Thus }} - \frac{1}{2} < 1 - \sqrt {1 - \lambda } \leqslant 1$$
$$\eqalign{ & {\text{or, }} - \frac{3}{2} < - \sqrt {1 - \lambda } \leqslant 0 \cr & \Rightarrow \,\,\sqrt {1 - \lambda } < \frac{3}{2} \cr & \Rightarrow \,\,1 - \lambda < \frac{9}{4} \cr & \Rightarrow \,\,\lambda > - \frac{5}{4}. \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section