Question

If the sides of a triangle are in G.P. and the largest angle is twice the smallest angle then the common ratio, which is greater than 1, lies in the interval

A. $$\left( {1,\sqrt 3 } \right)$$
B. $$\left( {1,\root 4 \of 3 } \right)$$  
C. $$\left( {1,\frac{{\sqrt 5 + 1}}{2}} \right)$$
D. None of these
Answer :   $$\left( {1,\root 4 \of 3 } \right)$$
Solution :
$$b = ar,c = a{r^2},$$    where $$r > 1.$$
From the question, $$C = 2A.\,\,{\text{So}},B = \pi - A - C = \pi - 3A.$$
$$\eqalign{ & \therefore \,\,\frac{a}{{\sin \,A}} = \frac{b}{{\sin \,B}} = \frac{c}{{\sin \,C}} \cr & \Rightarrow \,\,\frac{1}{{\sin \,A}} = \frac{r}{{\sin \,3A}} = \frac{{{r^2}}}{{\sin \,2A}} \cr & \therefore \,\,{r^2} = 2\cos \,A\,\,{\text{and}}\,\,r = \frac{{\sin \,3A}}{{\sin \,A}} = 3 - 4{\sin ^2}A = 4{\cos ^2}A - 1 \cr & \therefore \,\,r = {r^4} - 1\,\,\,{\text{or,}}\,\,{r^4} = 1 + r. \cr} $$
Among $$\sqrt 3 ,\root 4 \of 3 ,\frac{{\sqrt 5 + 1}}{2}$$    we find $$\root 4 \of 3 $$ is the smallest because $${\left( {\sqrt 3 } \right)^4} = 9,{\left( {\root 4 \of 3 } \right)^4} = 3,{\left( {\frac{{\sqrt 5 + 1}}{2}} \right)^4} = {\left( {\frac{{3 + \sqrt 5 }}{2}} \right)^2} = \frac{{14 + 6\sqrt 5 }}{4} > 3.$$
Now, putting $$r = \root 4 \of 3 ,$$  we have $$3 > 1 + \root 4 \of 3 ,$$   implying $${\root 4 \of 3 }$$ does not satisfy $${r^4} = 1 + r.\,\,{\text{So, }}r < \root 4 \of 3 .$$

Releted MCQ Question on
Trigonometry >> Properties and Solutons of Triangle

Releted Question 1

If the bisector of the angle $$P$$ of a triangle $$PQR$$  meets $$QR$$  in $$S,$$ then

A. $$QS = SR$$
B. $$QS : SR = PR : PQ$$
C. $$QS : SR = PQ : PR$$
D. None of these
Releted Question 2

From the top of a light-house 60 metres high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is

A. $$\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)60\,{\text{metres}}$$
B. $$\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)60\,{\text{metres}}$$
C. $${\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)^2}{\text{metres}}$$
D. none of these
Releted Question 3

In a triangle $$ABC,$$  angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$       then the measure of angle $$C$$ is

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{2}$$
C. $$\frac{2\pi }{3}$$
D. $$\frac{5\pi }{6}$$
Releted Question 4

In a triangle $$ABC,$$  $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$     Let $$D$$ divide $$BC$$  internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$   is equal to

A. $$\frac{1}{{\sqrt 6 }}$$
B. $${\frac{1}{3}}$$
C. $$\frac{1}{{\sqrt 3 }}$$
D. $$\sqrt {\frac{2}{3}} $$

Practice More Releted MCQ Question on
Properties and Solutons of Triangle


Practice More MCQ Question on Maths Section