Question

If the roots of $$ax^2 + bx + c = 0$$    are the reciprocals of those of $$\ell {x^2} + mx + n = 0$$    then $$a : b : c =$$

A. $$n : m : \ell$$  
B. $$\ell : m : n$$
C. $$m : n : \ell$$
D. $$n : \ell : m$$
Answer :   $$n : m : \ell$$
Solution :
If $$\alpha , \beta$$  be the roots then
$$\alpha + \beta = - \frac{b}{a},\alpha \beta = \frac{c}{a}$$
Now the roots of $$\ell x^2 + mx + n = 0$$    are $$\frac{1}{\alpha },\frac{1}{\beta }$$
$$\eqalign{ & \therefore \frac{1}{\alpha } + \frac{1}{\beta } = - \frac{m}{\ell }{\text{and}}\frac{1}{\alpha } \cdot \frac{1}{\beta } = \frac{n}{\ell } \cr & {\text{or, }}\frac{{\alpha + \beta }}{{\alpha \beta }} = - \frac{m}{\ell }{\text{and}}\frac{a}{c} = \frac{n}{\ell } \cr & {\text{or, }} - \frac{b}{c} = - \frac{m}{\ell }{\text{and}}\frac{a}{c} = \frac{n}{\ell } \cr & {\text{or, }}\frac{a}{n} = \frac{b}{m} = \frac{c}{\ell }. \cr & \therefore a:b:c = n:m:\ell \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section