Question

If the ratio of the $$7^{th}$$ term from the beginning to the $$7^{th}$$ term from the end in $${\left( {\root 3 \of 2 + \frac{1}{{\root 3 \of 3 }}} \right)^n}$$   is $$\frac{1}{6}$$ them $$n$$ equals to

A. 10
B. 9  
C. 8
D. 12
Answer :   9
Solution :
Given, $$\frac{{{T_7}}}{{{T_{n - 7 + 2}}}} = \frac{1}{6}$$
$$\eqalign{ & \Rightarrow \frac{{^n{C_6}{{\left( {\root 3 \of 2 } \right)}^{n - 6}}{{\left( {\frac{1}{{\root 3 \of 3 }}} \right)}^6}}}{{^n{C_{n - 6}}{{\left( {\root 3 \of 2 } \right)}^6}{{\left( {\frac{1}{{\root 3 \of 3 }}} \right)}^{n - 6}}}} = \frac{1}{6} \cr & \Rightarrow {2^{\frac{{n - 12}}{3}}} \cdot {3^{\frac{{n - 12}}{3}}} = \frac{1}{6} \cr & \Rightarrow {6^{\frac{{n - 12}}{3}}} = {6^{ - 1}} \cr & \therefore \frac{{n - 12}}{3} = - 1 \cr & \Rightarrow n = 9 \cr} $$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section