Question

If the points $$A\left( {1,\,2,\, - 1} \right),\,B\left( {2,\,6,\,2} \right)$$     and $$C\left( {\lambda ,\, - 2,\, - 4} \right)$$   are collinear then $$\lambda $$ is :

A. $$0$$  
B. $$2$$
C. $$ - 2$$
D. $$1$$
Answer :   $$0$$
Solution :
Direction ratios of the line $$AB$$  are $$2 - 1,\,6 - 2,\,2 - \left( { - 1} \right),$$     i.e., $$1,\,4,\,3.$$   Direction ratios of the line $$AC$$ are $$\lambda - 1,\, - 2 - 2,\, - 4 - \left( { - 1} \right),$$      i.e., $$\lambda - 1,\, - 4,\, - 3.$$    For collinearity, $$AB||AC\,\,\,\,\, \Rightarrow \frac{{\lambda - 1}}{1} = \frac{{ - 4}}{4} = \frac{{ - 3}}{3}\,\,\,\,\, \Rightarrow \lambda = 0.$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section