Question

If the origin is shifted $$\left( {1,\,2,\, - 3} \right)$$   without changing the directions of the axis, then find the new coordinates of the point $$\left( {0,\,4,\,5} \right)$$   with respect to new frame.

A. $$\left( { - 1,\,2,\,8} \right)$$  
B. $$\left( {4,\,5,\,1} \right)$$
C. $$\left( {3,\, - 2,\,4} \right)$$
D. $$\left( {6,\,0,\,8} \right)$$
Answer :   $$\left( { - 1,\,2,\,8} \right)$$
Solution :
In the new frame $$x' = x - {x_1},\,y' = y - {y_1},\,z' = z - {z_1},\,$$
Where $$\left( {{x_1},\,{y_1},\,{z_1}} \right)$$   is shifted origin.
$$ \Rightarrow x' = 0 - 1 = - 1,\,y' = 4 - 2 = 2,\,z' = 5 + 3 = 8$$
Hence, the coordinates of the point with respect to the new coordinates frame are $$\left( { - 1,\,2,\,8} \right).$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section