Question
If the lines $$\frac{{x + 2}}{{4\lambda + 1}} = \frac{{y - 1}}{4} = \frac{z}{{ - 18}}$$ and $$\frac{x}{{ - 3}} = \frac{{y + 1}}{{5\mu - 3}} = \frac{{z - 1}}{6}$$ are parallel to each other then the value of the pair $$\left( {\lambda ,\,\mu } \right)$$ is :
A.
$$\left( { - 2,\,\frac{1}{3}} \right)$$
B.
$$\left( {2,\, - \frac{1}{3}} \right)$$
C.
$$\left( {2,\,\frac{1}{3}} \right)$$
D.
cannot be found
Answer :
$$\left( {2,\,\frac{1}{3}} \right)$$
Solution :
Direction ratios of the lines are $$4\lambda + 1,\,4,\, - 18,$$ and $$ - 3,\,5\mu - 3,\,6.$$
They are parallel
$$\eqalign{
& \Rightarrow \frac{{4\lambda + 1}}{{ - 3}} = \frac{4}{{5\mu - 3}} = \frac{{ - 18}}{6} \cr
& \Rightarrow \frac{{4\lambda + 1}}{{ - 3}} = - 3{\text{ and }}\frac{4}{{5\mu - 3}} = - 3 \cr} $$