Question

If the lines $$\frac{x}{1} = \frac{y}{2} = \frac{z}{3},\,\frac{{x - 1}}{3} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 3}}{4}$$         and $$\frac{{x + k}}{3} = \frac{{y - 1}}{2} = \frac{{z - 2}}{h}$$      are concurrent then :

A. $$h = - 2,\,k = - 6$$
B. $$h = \frac{1}{2},\,k = 2$$
C. $$h = 6,\,k = 2$$
D. $$h = 2,\,k = \frac{1}{2}$$  
Answer :   $$h = 2,\,k = \frac{1}{2}$$
Solution :
Any point on the first line is $$\left( {r,\,2r,\,3r} \right),$$   and any point on the second line is $$\left( {1 + 3r',\,2 - r',\,3 + 4r'} \right).$$      For the point of intersection, $$r = 1 + 3r',\,2r = 2 - r',\,3r = 3 + 4r'\,\,\,\, \Rightarrow r = 1{\text{ and }}r' = 0.$$
So, the point of intersection of the first two lines is $$\left( {1,\,2,\,3} \right).$$   It is on the third line. So, $$\frac{{1 + k}}{3} = \frac{{2 - 1}}{2} = \frac{{3 - 2}}{h}.$$

Releted MCQ Question on
Geometry >> 3D Geometry and Vectors

Releted Question 1

The scalar $$\vec A.\left( {\vec B + \vec C} \right) \times \left( {\vec A + \vec B + \vec C} \right)$$      equals :

A. $$0$$
B. $$\left[ {\vec A\,\vec B\,\vec C} \right] + \left[ {\vec B\,\vec C\,\vec A} \right]$$
C. $$\left[ {\vec A\,\vec B\,\vec C} \right]$$
D. None of these
Releted Question 2

For non-zero vectors $$\vec a,\,\vec b,\,\vec c,\,\left| {\left( {\vec a \times \vec b} \right).\vec c} \right| = \left| {\vec a} \right|\left| {\vec b} \right|\left| {\vec c} \right|$$       holds if and only if -

A. $$\vec a.\vec b = 0,\,\,\,\vec b.\vec c = 0$$
B. $$\vec b.\vec c = 0,\,\,\,\vec c.\vec a = 0$$
C. $$\vec c.\vec a = 0,\,\,\,\vec a.\vec b = 0$$
D. $$\vec a.\vec b = \vec b.\vec c = \vec c.\vec a = 0$$
Releted Question 3

The volume of the parallelepiped whose sides are given by $$\overrightarrow {OA} = 2i - 2j,\,\,\overrightarrow {OB} = i + j - k,\,\,\overrightarrow {OC} = 3i - k,$$         is :

A. $$\frac{4}{{13}}$$
B. $$4$$
C. $$\frac{2}{7}$$
D. none of these
Releted Question 4

The points with position vectors $$60i + 3j,\,\,40i - 8j,\,\,ai - 52j$$      are collinear if :

A. $$a = - 40$$
B. $$a = 40$$
C. $$a = 20$$
D. none of these

Practice More Releted MCQ Question on
3D Geometry and Vectors


Practice More MCQ Question on Maths Section