Question

If the line $$y = mx + \sqrt {{a^2}{m^2} - {b^2}} $$     touches the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$$    at the point $$\varphi .$$ Then $$\varphi = \,?$$

A. $${\sin ^{ - 1}}\left( m \right)$$
B. $${\sin ^{ - 1}}\left( {\frac{a}{{bm}}} \right)$$
C. $${\sin ^{ - 1}}\left( {\frac{b}{{am}}} \right)$$  
D. $${\sin ^{ - 1}}\left( {\frac{{bm}}{a}} \right)$$
Answer :   $${\sin ^{ - 1}}\left( {\frac{b}{{am}}} \right)$$
Solution :
Equation of tangent at point $$'\varphi '$$ on the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$$    is
$$\eqalign{ & \frac{x}{a}\sec \,\varphi - \frac{y}{b}\tan \,\varphi = 1 \cr & {\text{or }}y = \frac{b}{a}x\,{\text{cosec}}\,\varphi - b\,\cot \,\varphi ......\left( 1 \right) \cr & {\text{If }}y = mx + \sqrt {{a^2}{m^2} - {b^2}} ......\left( 2 \right) \cr} $$
also touches the hyperbola then on comparing $$\left( 1 \right)$$ & $$\left( 2 \right)$$
$$\eqalign{ & 1 = \frac{{\frac{b}{a}{\text{cosec}}\,\varphi }}{m} = \frac{{ - b\,\cot \,\varphi }}{{\sqrt {{a^2}{m^2} - {b^2}} }} \cr & {\text{Hence, }}m = \frac{b}{a}{\text{cosec}}\,\varphi \,; \cr & {\text{or cosec}}\,\varphi = \frac{{am}}{b} \cr & {\text{or }}\sin \,\varphi = \frac{b}{{am}} \cr & {\text{or }}\varphi = {\sin ^{ - 1}}\frac{b}{{am}} \cr} $$

Releted MCQ Question on
Geometry >> Hyperbola

Releted Question 1

Each of the four inequalities given below defines a region in the $$xy$$  plane. One of these four regions does not have the following property. For any two points $$\left( {{x_1},\,{y_1}} \right)$$  and $$\left( {{x_2},\,{y_2}} \right)$$  in the the region, the point $$\left( {\frac{{{x_1} + {x_2}}}{2},\,\frac{{{y_1} + {y_2}}}{2}} \right)$$    is also in the region. The inequality defining this region is :

A. $${x^2} + 2{y^2} \leqslant 1$$
B. $${\text{max }}\left\{ {\left| x \right|,\left| y \right|} \right\} \leqslant 1$$
C. $${x^2} - {y^2} \leqslant 1$$
D. $${y^2} - {x^2} \leqslant 0$$
Releted Question 2

Let $$P\left( {a\,\sec \,\theta ,\,b\,\tan \,\theta } \right)$$    and $$Q\left( {a\,\sec \,\phi ,\,b\,\tan \,\phi } \right),$$    where $$\theta + \phi = \frac{\pi }{2},$$   be two points on the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1.$$    If $$\left( {h,\,k} \right)$$  is the point of intersection of the normal at $$P$$ and $$Q,$$  then $$k$$ is equal to :

A. $$\frac{{{a^2} + {b^2}}}{a}$$
B. $$ - \left( {\frac{{{a^2} + {b^2}}}{a}} \right)$$
C. $$\frac{{{a^2} + {b^2}}}{b}$$
D. $$ - \left( {\frac{{{a^2} + {b^2}}}{b}} \right)$$
Releted Question 3

If $$x=9$$  is the chord of contact of the hyperbola $${x^2} - {y^2} = 9,$$   then the equation of the corresponding pair of tangents is :

A. $$9{x^2} - 8{y^2} + 18x - 9 = 0$$
B. $$9{x^2} - 8{y^2} - 18x + 9 = 0$$
C. $$9{x^2} - 8{y^2} - 18x - 9 = 0$$
D. $$9{x^2} - 8{y^2} + 18x + 9 = 0$$
Releted Question 4

For hyperbola $$\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1,$$     which of the following remains constant with change in $$'\alpha \,'$$

A. abscissae of vertices
B. abscissae of foci
C. eccentricity
D. directrix

Practice More Releted MCQ Question on
Hyperbola


Practice More MCQ Question on Maths Section