Question

If the line $$x-1=0$$   is the directrix of the parabola $${y^2} - kx + 8 = 0,$$    then one of the values of $$k$$ is-

A. $$\frac{1}{8}$$
B. $$8$$
C. $$4$$  
D. $$\frac{1}{4}$$
Answer :   $$4$$
Solution :
KEY CONCEPT : The directrix of the parabola $${y^2} = 4a$$
$$\left( {x - {x_1}} \right)$$  is given by $$x = {x_1} - a$$
$${y^2} = kx - 8 \Rightarrow {y^2} = k\left( {x - \frac{8}{k}} \right)$$
Directrix of parabola is $$x = \frac{8}{k} - \frac{k}{4};$$
Now, $$x=1$$  also coincides with $$x = \frac{8}{k} - \frac{k}{4}$$
On comparison, $$\frac{8}{k} - \frac{k}{4} = 1,$$   or $${k^2} - 4k - 32 = 0$$
On solving we get $$k=4$$

Releted MCQ Question on
Geometry >> Parabola

Releted Question 1

Consider a circle with its centre lying on the focus of the parabola $${y^2} = 2px$$   such that it touches the directrix of the parabola. Then a point of intersection of the circle and parabola is-

A. $$\left( {\frac{p}{2},\,p} \right){\text{ or }}\left( {\frac{p}{2},\, - p} \right)$$
B. $$\left( {\frac{p}{2},\, - \frac{p}{2}} \right)$$
C. $$\left( { - \frac{p}{2},\,p} \right)$$
D. $$\left( { - \frac{p}{2},\, - \frac{p}{2}} \right)$$
Releted Question 2

The curve described parametrically by $$x = {t^2} + t + 1,\,\,y = {t^2} - t + 1$$      represents-

A. a pair of straight lines
B. an ellipse
C. a parabola
D. a hyperbola
Releted Question 3

If $$x+y=k$$   is normal to $${y^2} = 12x,$$   then $$k$$ is-

A. $$3$$
B. $$9$$
C. $$ - 9$$
D. $$ - 3$$
Releted Question 4

If the line $$x-1=0$$   is the directrix of the parabola $${y^2} - kx + 8 = 0,$$    then one of the values of $$k$$ is-

A. $$\frac{1}{8}$$
B. $$8$$
C. $$4$$
D. $$\frac{1}{4}$$

Practice More Releted MCQ Question on
Parabola


Practice More MCQ Question on Maths Section