Question

If the line, $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 2}}{4}$$     meets the plane, $$x+2y+3z=15$$    at a point $$P,$$ then the distance of $$P$$ from the origin is :

A. $$\frac{{\sqrt 5 }}{2}$$
B. $$2\sqrt 5 $$
C. $$\frac{9}{2}$$  
D. $$\frac{7}{2}$$
Answer :   $$\frac{9}{2}$$
Solution :
Let point on line be $$P\left( {2k + 1,\,3k - 1,\,4k + 2} \right)$$
Since, point $$P$$ lies on the plane $$x+2y+3z=15$$
$$2k+1+6k-2+12k+6=15$$
$$\eqalign{ & \Rightarrow k = \frac{1}{2} \cr & \therefore P \equiv \left( {2,\,\frac{1}{2},\,4} \right) \cr} $$
Then the distance of the point $$P$$ from the origin is
$$OP = \sqrt {4 + \frac{1}{4} + 16} = \frac{9}{2}$$

Releted MCQ Question on
Geometry >> Three Dimensional Geometry

Releted Question 1

The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A. $$7$$
B. $$ - 7$$
C. no real value
D. $$4$$
Releted Question 2

If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A. $$\frac{3}{2}$$
B. $$\frac{9}{2}$$
C. $$ - \frac{2}{9}$$
D. $$ - \frac{3}{2}$$
Releted Question 3

A plane which is perpendicular to two planes $$2x - 2y + z = 0$$    and $$x - y + 2z = 4,$$    passes through $$\left( {1,\, - 2,\,1} \right).$$   The distance of the plane from the point $$\left( {1,\,2,\,2} \right)$$  is :

A. $$0$$
B. $$1$$
C. $$\sqrt 2 $$
D. $$2\sqrt 2 $$
Releted Question 4

Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A. $$\frac{1}{4}$$
B. $$ - \frac{1}{4}$$
C. $$\frac{1}{8}$$
D. $$ - \frac{1}{8}$$

Practice More Releted MCQ Question on
Three Dimensional Geometry


Practice More MCQ Question on Maths Section