Question

If the functions $$f\left( x \right)$$  and $$g\left( x \right)$$  are continuous in $$\left[ {a,\,b} \right]$$  and differentiable in $$\left( {a,\,b} \right),$$  then equation \[\left| \begin{array}{l} f\left( a \right)\,\,\,\,\,f\left( b \right)\\ g\left( a \right)\,\,\,\,\,g\left( b \right) \end{array} \right| = \left( {b - a} \right)\left| \begin{array}{l} f\left( a \right)\,\,\,\,\,f'\left( x \right)\\ g\left( a \right)\,\,\,\,\,g'\left( x \right) \end{array} \right|\]        has in the interval $$\left[ {a,\,b} \right]$$

A. at least one root  
B. exactly one root
C. at most one root
D. no root
Answer :   at least one root
Solution :
Let \[h\left( x \right)\left| \begin{array}{l} f\left( a \right)\,\,\,\,\,f\left( x \right)\\ g\left( a \right)\,\,\,\,\,g\left( x \right) \end{array} \right| = f\left( a \right)g\left( x \right) - g\left( a \right)f\left( x \right)\]
Then, \[h'\left( x \right) = f\left( a \right)g'\left( x \right) - g\left( a \right)f'\left( x \right) = \left| \begin{array}{l} f\left( a \right)\,\,\,\,\,f'\left( x \right)\\ g\left( a \right)\,\,\,\,\,g'\left( x \right) \end{array} \right|\]
Since, $$f\left( x \right)$$  and $$g\left( x \right)$$  are continuous in $$\left[ {a,\,b} \right]$$  and differentiable in $$\left( {a,\,b} \right),$$  therefore $$h\left( x \right)$$  is also continuous $$\left[ {a,\,b} \right]$$  in and differentiable in $$\left( {a,\,b} \right).$$
So, by mean value theorem, there exists at least one real number $$c,\,a < c < b$$   for which $$h'\left( c \right) = \frac{{h\left( b \right) - h\left( a \right)}}{{b - a}},$$
$$\therefore \,h\left( b \right) - h\left( a \right) = \left( {b - a} \right)h'\left( c \right).....\left( {\text{i}} \right)$$
Here, \[h\left( a \right) = \left| \begin{array}{l} f\left( a \right)\,\,\,\,\,f\left( a \right)\\ g\left( a \right)\,\,\,\,\,g\left( a \right) \end{array} \right| = 0,\,\,h\left( b \right) = \left| \begin{array}{l} f\left( a \right)\,\,\,\,\,f\left( b \right)\\ g\left( a \right)\,\,\,\,\,g\left( b \right) \end{array} \right|\]

$$\therefore $$  From equation \[\left( {\rm{i}} \right),\,\left| \begin{array}{l} f\left( a \right)\,\,\,\,\,f\left( b \right)\\ g\left( a \right)\,\,\,\,\,g\left( b \right) \end{array} \right| = \left( {b - a} \right),\,\,h'\left( c \right) = \left( {b - a} \right)\left| \begin{array}{l} f\left( a \right)\,\,\,\,\,f'\left( c \right)\\ g\left( a \right)\,\,\,\,\,g'\left( c \right) \end{array} \right|\]

Releted MCQ Question on
Calculus >> Continuity

Releted Question 1

For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A. discontinuous at some $$x$$
B. continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C. $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D. $$f'\left( x \right)$$  exists for all $$x$$
Releted Question 2

The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A. $$a-b$$
B. $$a+b$$
C. $$\ln a - \ln b$$
D. none of these
Releted Question 3

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$
D. $$x$$ which is not an integer
Releted Question 4

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Practice More Releted MCQ Question on
Continuity


Practice More MCQ Question on Maths Section