Question

If the fractional part of the number $$\frac{{{2^{403}}}}{{15}}$$  is $$\frac{k}{{15}},$$  then $$k$$ is equal to:

A. 6
B. 8  
C. 4
D. 14
Answer :   8
Solution :
$$\eqalign{ & {2^{403}} = {2^{400}} \cdot {2^3} \cr & = {2^{4\infty 100}} \cdot {2^3} \cr & = {\left( {{2^4}} \right)^{100}} \cdot 8 \cr & = 8{\left( {{2^4}} \right)^{100}} = 8{\left( {16} \right)^{100}} \cr & = 8{\left( {1 + 15} \right)^{100}} \cr & = 8 + 15\mu \cr} $$
When $${2^{403}}$$ is divided by 15, then remainder is 8. Hence, fractional part of the number is $$\frac{8}{{15}}$$ Therefore value of $$k$$ is 8

Releted MCQ Question on
Calculus >> Function

Releted Question 1

Let $$R$$ be the set of real numbers. If $$f:R \to R$$   is a function defined by $$f\left( x \right) = {x^2},$$   then $$f$$ is:

A. Injective but not surjective
B. Surjective but not injective
C. Bijective
D. None of these.
Releted Question 2

The entire graphs of the equation $$y = {x^2} + kx - x + 9$$     is strictly above the $$x$$-axis if and only if

A. $$k < 7$$
B. $$ - 5 < k < 7$$
C. $$k > - 5$$
D. None of these.
Releted Question 3

Let $$f\left( x \right) = \left| {x - 1} \right|.$$    Then

A. $$f\left( {{x^2}} \right) = {\left( {f\left( x \right)} \right)^2}$$
B. $$f\left( {x + y} \right) = f\left( x \right) + f\left( y \right)$$
C. $$f\left( {\left| x \right|} \right) = \left| {f\left( x \right)} \right|$$
D. None of these
Releted Question 4

If $$x$$ satisfies $$\left| {x - 1} \right| + \left| {x - 2} \right| + \left| {x - 3} \right| \geqslant 6,$$       then

A. $$0 \leqslant x \leqslant 4$$
B. $$x \leqslant - 2\,{\text{or}}\,x \geqslant 4$$
C. $$x \leqslant 0\,{\text{or}}\,x \geqslant 4$$
D. None of these

Practice More Releted MCQ Question on
Function


Practice More MCQ Question on Maths Section