Question

If the equation of the locus of a point equidistant from the point $$\left( {{a_1},\,{b_1}} \right)$$   and $$\left( {{a_2},\,{b_2}} \right)$$   is $$\left( {{a_1} - \,{b_2}} \right)x + \left( {{a_1} - \,{b_2}} \right)y + c = 0,$$       then the value of $$'c\,'$$  is-

A. $$\sqrt {{a_1}^2 + {b_1}^2 - {a_2}^2 - {b_2}^2} $$
B. $$\frac{1}{2}\left( {{a_2}^2 + {b_2}^2 - {a_1}^2 - {b_1}^2} \right)$$  
C. $${a_1}^2 - {a_2}^2 + {b_1}^2 - {b_2}^2$$
D. $$\frac{1}{2}\left( {{a_1}^2 + {a_2}^2 + {b_1}^2 + {b_2}^2} \right)$$
Answer :   $$\frac{1}{2}\left( {{a_2}^2 + {b_2}^2 - {a_1}^2 - {b_1}^2} \right)$$
Solution :
$$\eqalign{ & {\left( {x - {a_1}} \right)^2} + {\left( {y - {b_1}} \right)^2} = {\left( {x - {a_2}} \right)^2} + {\left( {y - {b_2}} \right)^2} \cr & \left( {{a_1} - {a_2}} \right)x + \left( {{b_1} - {b_2}} \right)y + \frac{1}{2}\left( {{a_2}^2 + {b_2}^2 - {a_1}^2 - {b_1}^2} \right) = 0 \cr & c = \frac{1}{2}\left( {{a_2}^2 + {b_2}^2 - {a_1}^2 - {b_1}^2} \right) \cr} $$

Releted MCQ Question on
Geometry >> Straight Lines

Releted Question 1

The points $$\left( { - a, - b} \right),\left( {0,\,0} \right),\left( {a,\,b} \right)$$     and $$\left( {{a^2},\,ab} \right)$$  are :

A. Collinear
B. Vertices of a parallelogram
C. Vertices of a rectangle
D. None of these
Releted Question 2

The point (4, 1) undergoes the following three transformations successively.
(i) Reflection about the line $$y =x.$$
(ii) Translation through a distance 2 units along the positive direction of $$x$$-axis.
(iii) Rotation through an angle $$\frac{p}{4}$$ about the origin in the counter clockwise direction.
Then the final position of the point is given by the coordinates.

A. $$\left( {\frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
B. $$\left( { - \sqrt 2 ,\,7\sqrt 2 } \right)$$
C. $$\left( { - \frac{1}{{\sqrt 2 }},\,\frac{7}{{\sqrt 2 }}} \right)$$
D. $$\left( {\sqrt 2 ,\,7\sqrt 2 } \right)$$
Releted Question 3

The straight lines $$x + y= 0, \,3x + y-4=0,\,x+ 3y-4=0$$         form a triangle which is-

A. isosceles
B. equilateral
C. right angled
D. none of these
Releted Question 4

If $$P = \left( {1,\,0} \right),\,Q = \left( { - 1,\,0} \right)$$     and $$R = \left( {2,\,0} \right)$$  are three given points, then locus of the point $$S$$ satisfying the relation $$S{Q^2} + S{R^2} = 2S{P^2},$$    is-

A. a straight line parallel to $$x$$-axis
B. a circle passing through the origin
C. a circle with the centre at the origin
D. a straight line parallel to $$y$$-axis

Practice More Releted MCQ Question on
Straight Lines


Practice More MCQ Question on Maths Section