Question

If the ellipse $$9{x^2} + 16{y^2} = 144$$     intercepts the line $$3x + 4y = 12,$$    then what is the length of the chord so formed ?

A. $$5$$ units  
B. $$6$$ units
C. $$8$$ units
D. $$10$$  units
Answer :   $$5$$ units
Solution :
Here, $$9{x^2} + 16{y^2} = 144$$     and $$3x + 4y = 12$$
$$ \Rightarrow x = \frac{{12 - 4y}}{3}$$
So, $$9{\left( {\frac{{12 - 4y}}{3}} \right)^2} + 16{y^2} = 144$$
On solving we get, $$y = 0,\,3$$
For $$y = 0\,;\,x = 4$$
For $$y = 3\,;\,x = 0$$
$$ \Rightarrow $$  Length of chord
$$\eqalign{ & = \sqrt {{{\left( {0 - 3} \right)}^2} + {{\left( {4 - 0} \right)}^2}} \cr & = \sqrt {9 + 16} \cr & = \sqrt {25} \cr & = 5{\text{ units}} \cr} $$

Releted MCQ Question on
Geometry >> Ellipse

Releted Question 1

Let $$E$$ be the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$$   and $$C$$ be the circle $${x^2} + {y^2} = 9.$$   Let $$P$$ and $$Q$$ be the points $$\left( {1,\,2} \right)$$  and $$\left( {2,\,1} \right)$$  respectively. Then-

A. $$Q$$ lies inside $$C$$ but outside $$E$$
B. $$Q$$ lies outside both $$C$$ and $$E$$
C. $$P$$ lies inside both $$C$$ and $$E$$
D. $$P$$ lies inside $$C$$ but outside $$E$$
Releted Question 2

The radius of the circle passing through the foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1,$$   and having its centre at $$\left( {0,\,3} \right)$$  is-

A. $$4$$
B. $$3$$
C. $$\sqrt {\frac{1}{2}} $$
D. $$\frac{7}{2}$$
Releted Question 3

The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1,$$    is-

A. $$\frac{{27}}{4}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
B. $$9\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
C. $$\frac{{27}}{2}\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
D. $$27\,\,{\text{sq}}{\text{.}}\,{\text{units}}$$
Releted Question 4

If tangents are drawn to the ellipse $${x^2} + 2{y^2} = 2,$$   then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is-

A. $$\frac{1}{{2{x^2}}} + \frac{1}{{4{y^2}}} = 1$$
B. $$\frac{1}{{4{x^2}}} + \frac{1}{{2{y^2}}} = 1$$
C. $$\frac{{{x^2}}}{2} + \frac{{{y^2}}}{4} = 1$$
D. $$\frac{{{x^2}}}{4} + \frac{{{y^2}}}{2} = 1$$

Practice More Releted MCQ Question on
Ellipse


Practice More MCQ Question on Maths Section