Question

If the coordinates of four concyclic points on the rectangular hyperbola $$xy = {c^2}$$  are $$\left( {c{t_{\text{i}}},\,\frac{c}{{{t_{\text{i}}}}}} \right),\,{\text{i}} = 1,\,2,\,3,\,4$$      then :

A. $${t_1}{t_2}{t_3}{t_4} = - 1$$
B. $${t_1}{t_2}{t_3}{t_4} = 1$$  
C. $${t_1}{t_3} = {t_2}{t_4}$$
D. $${t_1} + {t_2} + {t_3} + {t_4} = {c^2}$$
Answer :   $${t_1}{t_2}{t_3}{t_4} = 1$$
Solution :
Let the points lie on the circle $${x^2} + {y^2} + 2gx + 2fy + 2fy + k = 0,$$        then
$$\eqalign{ & {c^2}t_{\text{i}}^2 + \frac{{{c^2}}}{{t_{\text{i}}^2}} + 2gc{t_{\text{i}}} + 2f\frac{c}{{{t_{\text{i}}}}} + k = 0 \cr & \Rightarrow {c^2}t_{\text{i}}^4 + 2gct_{\text{i}}^3 + kt_{\text{i}}^3 + 2fc{t_{\text{i}}} + {c^2} = 0 \cr} $$
Its roots are $${t_1},\,{t_2},\,{t_3},\,{t_4}$$    so $${t_1}{t_2}{t_3}{t_4} = \frac{{{c^2}}}{{{c^2}}} = 1$$
Also, $${t_1} + {t_2} + {t_3} + {t_4} = - \frac{{2gc}}{{{c^2}}} = - \frac{{2g}}{c}$$

Releted MCQ Question on
Geometry >> Hyperbola

Releted Question 1

Each of the four inequalities given below defines a region in the $$xy$$  plane. One of these four regions does not have the following property. For any two points $$\left( {{x_1},\,{y_1}} \right)$$  and $$\left( {{x_2},\,{y_2}} \right)$$  in the the region, the point $$\left( {\frac{{{x_1} + {x_2}}}{2},\,\frac{{{y_1} + {y_2}}}{2}} \right)$$    is also in the region. The inequality defining this region is :

A. $${x^2} + 2{y^2} \leqslant 1$$
B. $${\text{max }}\left\{ {\left| x \right|,\left| y \right|} \right\} \leqslant 1$$
C. $${x^2} - {y^2} \leqslant 1$$
D. $${y^2} - {x^2} \leqslant 0$$
Releted Question 2

Let $$P\left( {a\,\sec \,\theta ,\,b\,\tan \,\theta } \right)$$    and $$Q\left( {a\,\sec \,\phi ,\,b\,\tan \,\phi } \right),$$    where $$\theta + \phi = \frac{\pi }{2},$$   be two points on the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1.$$    If $$\left( {h,\,k} \right)$$  is the point of intersection of the normal at $$P$$ and $$Q,$$  then $$k$$ is equal to :

A. $$\frac{{{a^2} + {b^2}}}{a}$$
B. $$ - \left( {\frac{{{a^2} + {b^2}}}{a}} \right)$$
C. $$\frac{{{a^2} + {b^2}}}{b}$$
D. $$ - \left( {\frac{{{a^2} + {b^2}}}{b}} \right)$$
Releted Question 3

If $$x=9$$  is the chord of contact of the hyperbola $${x^2} - {y^2} = 9,$$   then the equation of the corresponding pair of tangents is :

A. $$9{x^2} - 8{y^2} + 18x - 9 = 0$$
B. $$9{x^2} - 8{y^2} - 18x + 9 = 0$$
C. $$9{x^2} - 8{y^2} - 18x - 9 = 0$$
D. $$9{x^2} - 8{y^2} + 18x + 9 = 0$$
Releted Question 4

For hyperbola $$\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1,$$     which of the following remains constant with change in $$'\alpha \,'$$

A. abscissae of vertices
B. abscissae of foci
C. eccentricity
D. directrix

Practice More Releted MCQ Question on
Hyperbola


Practice More MCQ Question on Maths Section