Question

If the circle $${x^2} + {y^2} = {a^2}$$   intersects the hyperbola $$xy = {c^2}$$   in four points $$P\left( {{x_1},\,{y_1}} \right),\,Q\left( {{x_2},\,{y_2}} \right),\,R\left( {{x_3},\,{y_3}} \right),\,S\left( {{x_4},\,{y_4}} \right){\text{ then :}}$$

A. $${x_1} + {x_2} + {x_3} + {x_4} = 0$$  
B. $${y_1} + {y_2} + {y_3} + {y_4} = 2$$
C. $${x_1}{x_2}{x_3}{x_4} = 2{c^4}$$
D. $${y_1}{y_2}{y_3}{y_4} = 2{c^4}$$
Answer :   $${x_1} + {x_2} + {x_3} + {x_4} = 0$$
Solution :
$$\eqalign{ & \left( {{x_{\text{i}}},\,{y_{\text{i}}}} \right),\,{\text{i}} = 1,\,2,\,3,\,4{\text{ lies on}} \cr & xy = {c^2} \Rightarrow {y_{\text{i}}} = \frac{{{c^2}}}{{{x_{\text{i}}}}} \cr & {\text{Now the point }}\left( {{x_{\text{i}}},\,{y_{\text{i}}}} \right){\text{ lies on}} \cr & {x^2} + {y^2} = {a^2} \cr & \Rightarrow x_{\text{i}}^2 + \frac{{{c^4}}}{{{x_{\text{i}}}}} = {a^2} \cr & \Rightarrow x_{\text{i}}^4 - {a^2}x_{\text{i}}^2 + {c^4} = 0 \cr & {\text{Its roots are }}{x_1},\,{x_2},\,{x_3},\,{x_4} \cr & \therefore \,{x_1} + {x_2} + {x_3} + {x_4} = 0 \cr & \Rightarrow {x_1}{x_2} + {x_1}{x_3} + {x_1}{x_4} + {x_2}{x_3} + {x_2}{x_4} + {x_3}{x_4} = {a^2} \cr & \Rightarrow {x_1}{x_2}{x_3} + {x_1}{x_2}{x_4} + {x_1}{x_3}{x_4} + {x_2}{x_3}{x_4} = 0 \cr & \Rightarrow {x_1}{x_2}{x_3}{x_4} = {c^4}{\text{ Clearly }}\left( {\bf{C}} \right){\text{ is not correct}} \cr & {\text{Now, }}{y_1} + {y_2} + {y_3} + {y_4} = \frac{{{c^2}}}{{{x_1}}}.\frac{{{c^2}}}{{{x_2}}}.\frac{{{c^2}}}{{{x_3}}}.\frac{{{c^2}}}{{{x_4}}} = {c^4} \cr & {\text{and }}{y_1} + {y_2} + {y_3} + {y_4} = \frac{{{c^2}\left( {\sum {{x_1}{x_2}{x_3}} } \right)}}{{{x_1}{x_2}{x_3}{x_4}}} = 0 \cr} $$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section