Question

If the chord $$y = mx + 1$$   of the circle $${x^2} + {y^2} = 1$$   subtends an angle of measure $${45^ \circ }$$ at the major segment of the circle then value of $$m$$ is-

A. $$2 \pm \sqrt 2 $$
B. $$ - 2 \pm \sqrt 2 $$
C. $$ - 1 \pm \sqrt 2 $$  
D. none of these
Answer :   $$ - 1 \pm \sqrt 2 $$
Solution :
Equation of circle $${x^2} + {y^2} = 1 = {\left( 1 \right)^2}$$
$$\eqalign{ & \Rightarrow {x^2} + {y^2} = {\left( {y - mx} \right)^2} \cr & \Rightarrow {x^2} = {m^2}{x^2} - 2\,mxy \cr & \Rightarrow {x^2}\left( {1 - {m^2}} \right) + 2\,mxy = 0 \cr} $$
Which represents the pair of lines between which the angle is $${45^ \circ }$$
$$\eqalign{ & \tan \,{45^ \circ } = \pm \frac{{2\sqrt {{m^2} - 0} }}{{1 - {m^2}}} = \frac{{ \pm 2m}}{{1 - {m^2}}}; \cr & \Rightarrow 1 - {m^2} = \pm 2m \Rightarrow {m^2} \pm 2m - 1 = 0 \cr & \Rightarrow m = \frac{{ - 2 \pm \sqrt {4 + 4} }}{2} = \frac{{ - 2 \pm 2\sqrt 2 }}{2} = - 1 \pm \sqrt 2 \cr} $$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section